
Bindgen improvements for
Rust for Linux

John Baublitz

Principal Software

Engineer

1

Bindgen improvements for Rust for Linux

2

Talk outline: ▸ Macro expansion in bindgen
Issue #753

▸ Raw pointer access for bitfields
Issue #2674

▸ Safe and unsafe conversions for
Rustified enums
Issue #2646

3

Macro expansion in
bindgen

#define CONSTANT 5 // expanded

#define CONSTANT UINT32_C(5) // not expanded

Bindgen improvements for Rust for Linux

4

Macro expansion in bindgen

Complex macros that evaluate to constants were not included

Problem

▸ Capture the name of the macro

▸ Create temporary file invoking the macro

▸ Use clang to evaluate the invocation and return the result

･ Nothing if it does not evaluate to a literal

･ Literal otherwise

Bindgen improvements for Rust for Linux

5

Macro expansion in bindgen

Use clang to evaluate macro invocations in temporary file

Solution

▸ --clang-macro-fallback

▸ --clang-macro-fallback-build-dir=DIR

Bindgen improvements for Rust for Linux

6

Macro expansion in bindgen

Opt-in

Usage

Bindgen improvements for Rust for Linux

7

Macro expansion in bindgen

Final performance: 3 - 5 seconds

Performance

▸ Performance testing was run on a consolidated header of all kernel constants created by Vadzim

Dambrouski

Bindgen improvements for Rust for Linux

8

Macro expansion in bindgen

Final performance: 3 - 5 seconds

Performance

▸ Initial prototype created a new file and TranslationUnit for each macro that couldn’t be parsed by

cexpr

･ Performance was unacceptably bad (35m for consolidated header)

･ Likely due to all of the IO required

▸ Second prototype reparsed the header for each macro, but reused the TranslationUnit so only one

temporary file needed to be written to the filesystem

･ Started with suggestion from ChatGPT from Vadzim Dambrouski

･ ChatGPT seems to have hallucinated; good starting point

･ Claimed that headers in reused translation units were not reparsed

･ Did not appear to be true based on performance

･ Performance was much better; still not good enough

Bindgen improvements for Rust for Linux

9

Macro expansion in bindgen

Final performance: 3 - 5 seconds

Performance

Bindgen improvements for Rust for Linux

10

Macro expansion in bindgen

Final performance: 3 - 5 seconds

Performance

▸ Final prototype reused the TranslationUnit and took advantage of precompiled headers to avoid

parsing the header for each macro

･ This performance was acceptable

･ Slight compilation time increase

▸ Bug was filed against original PR by @SeleDreams

▸ Two problems with the original PR

･ Clang will only accept one precompiled header; I used multiple

･ Other precompiled headers are ignored

･ CFLAGS were not passed into TranslationUnit

･ Breakage for #include among other things

Bindgen improvements for Rust for Linux

11

Macro expansion in bindgen

Development hurdles

▸ Potential future work

･ Add clang API to maintain macro information on parse

Bindgen improvements for Rust for Linux

12

Macro expansion in bindgen

Released in 0.70.0

Status

13

Raw pointer access for
bitfields

Bindgen improvements for Rust for Linux

14

Raw pointer access for bitfields

In some cases, accessors for bitfields were not sufficient due to Rust aliasing rules

Problem

// this is how you reference the type normally

struct FooWrapper(UnsafeCell<foo>);

#[repr(C)]

struct foo {

// this is a bitfield

field: u8,

mtx: mutex_t,

// mutex protected, bitfield

protected: u8

}

Example from @tgross35

Consider the case in the previous data structure:

▸ Context A creates &foo and access field

▸ Preemption hits, context blocks mtx, changes protected, and unlocks

▸ Context A resumes and &foo points to changed data, rustc has no way of knowing about it

▸ Context A accesses field

Example from @tgross35

Bindgen improvements for Rust for Linux

15

Raw pointer access for bitfields

In some cases, accessors for bitfields were not sufficient due to Rust aliasing rules

Problem

Bindgen improvements for Rust for Linux

16

Raw pointer access for bitfields

Add accessors that operate on raw pointers

Solution

 #[inline]

 pub unsafe fn set_available_raw(

 this: *mut Self, val: ::std::os::raw::c_uint

) {

 let val: u32 = ::std::mem::transmute(val);

 __BindgenBitfieldUnit::raw_set(

 addr_of!((*this)._bitfield_1),

 0usize, 1u8, val as u64

)

 }

 #[inline]

 pub unsafe fn available_raw(

 this: *const Self

) -> ::std::os::raw::c_uint {

 ::std::mem::transmute(__BindgenBitfieldUnit::raw_get(

 addr_of!((*this)._bitfield_1),

 0usize,

 1u8,

) as u32)

 }

Bindgen improvements for Rust for Linux

17

Raw pointer access for bitfields

Automatic

Usage

Bindgen improvements for Rust for Linux

18

Raw pointer access for bitfields

Rust for Linux code review done, waiting on maintainer code review

Status

19

Safe and unsafe
conversions for
Rustified enums

Bindgen improvements for Rust for Linux

20

Safe and unsafe conversions for Rustified enums

C allows any constant to be passed as an enum; no checks on validity of value

Problem

#include <stdio.h>

enum my_enum {

 CONSTANT1 = 1,

 CONSTANT2 = 2,

};

int takes_enum(enum my_enum e) {

 printf("%d\n", e);

}

int main() {

 takes_enum(2);

 takes_enum(3);

}

Bindgen improvements for Rust for Linux

21

Safe and unsafe conversions for Rustified enums

Add safe conversions from raw integers to Rust enums

Solution

#[repr(u32)]

#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]

pub enum foo {

 one = 1,

 two = 2,

 three = 3,

}

Example from @tgross35

pub const foo_one: foo = 1;

pub const foo_two: foo = 2;

pub const foo_three: foo = 3;

pub type foo_ctype = ::std::os::raw::c_uint;

Bindgen improvements for Rust for Linux

22

Safe and unsafe conversions for Rustified enums

Add safe conversions from raw integers to Rust enums

Solution
Example from @tgross35

struct FooError(foo_ctype);

impl TryFrom<foo_ctype> for foo {

 type Error = FooError;

 fn try_from(value: foo_ctype) -> Result<foo, FooError> {

 match value {

 1 => Ok(foo::one),

 2 => Ok(foo::two),

 3 => Ok(foo::three),

 _ => Err(FooError(value)),

 }

 }

}

Bindgen improvements for Rust for Linux

23

Safe and unsafe conversions for Rustified enums

Add safe conversions from raw integers to Rust enums

Solution
Example from @tgross35

impl foo {

 const unsafe fn from_ctype_unchecked(value: foo_ctype) -> Self {

 std::mem::transmute(value)

 }

}

Bindgen improvements for Rust for Linux

24

Safe and unsafe conversions for Rustified enums

Opt-in, breaking change

Usage
Example from @tgross35

▸ –-rustified-enum=[REGEX](=([non_exhaustive|try_from_raw|from_raw_unchecked]),*)?

▸ --rustified-enum-non-exhaustive-enum merged into –-rustified-enum

▸ CLI (REGEX[=(option),*])

･ Some prior art for argument format but very uncommon and needed extension

▸ Needed to merge rust and rust_non_exhaustive

･ Previously separate options via CLI

▸ A lot of the internals for enum generation assume exactly one type, translated or untranslated

･ Needed to extend internals to handle receiving both

Bindgen improvements for Rust for Linux

25

Safe and unsafe conversions for Rustified enums

Development hurdles

Discussion questions:

▸ Currently the PR adds constants representing enum values to code that previously did not have them

･ Thoughts?

▸ There are some cases where new constant names collide with existing constant names

･ Thoughts about namespacing?

･ [ENUM_NAME]_[VARIANT] does not appear to be sufficient

･ There are still collisions with existing constants

･ Perhaps _cval suffix?

Bindgen improvements for Rust for Linux

26

Safe and unsafe conversions for Rustified enums

In progress

Status

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

27

Thank you
Referenced PRs

● https://github.com/rust-lang/rust-bindgen/pull/2779

● https://github.com/rust-lang/rust-bindgen/pull/2823

● https://github.com/rust-lang/rust-bindgen/pull/2876

● https://github.com/rust-lang/rust-bindgen/pull/2908

